ASTRONOMY 4 De Anza College

Section 1

M - F, 8:30 - 9:20 am

De Anza Planetarium (PLT)

Marek Cichanski

Office: S-15a

Office hours: M thru F 9:30-10:20am; other times by appt.

Office phone: (408) 864-8664 Email: cichanskimarek@fhda.edu

IMPORTANT: This syllabus document is only a `condensed' version of the class website! For all of the information you need about this course, see the class website at: http://mrcgeoastro.com/astro4/index.html

TEXTBOOK

The Solar System, 9th edition by Seeds & Backman

(You can use the 8th edition if you want - the reading assignments and `What2Know' list have both the 8th and 9th edition pages listed.)

STUDENT LEARNING OUTCOMES

You'll be learning a lot about our solar system - and others - this quarter. You'll also learn a lot about how a large college course like this works. Here are some specific things your instructor wants to help you do; I hope that doing these things enables you to become a more scientifically aware citizen, and gets you excited about science no matter what your eventual path in life!

SLO #1: "Evaluate claims about the nature of the physical universe using the scientific method of hypothesis testing."

In other words: We observe the universe around us and we wonder how it works; why is it the way it is? A proposed explanation for how the universe (or some part of it) works is called a *hypothesis*. When someone proposes a hypothesis, other scientists try to *evaluate* that hypothesis, by checking to see if its predictions fit all of the other relevant observations. This process, of making and testing hypotheses, is called the *scientific method*. It is a way of thinking about the world that minimizes our chances of fooling ourselves, and maximizes our chances of figuring out how things really work. Part of what you'll do in this class is to put yourself in a scientist's shoes, by using this method.

SLO #2: "Compare and contrast the histories of solar-system bodies (e.g. moons, planets, asteroids, comets, meteorites) by integrating data from spacecraft and Earth-based observatories."

In other words: Many scientists - with job descriptions like astronomers and planetary scientists - study solar systems and the things they're made of (stars, planets, asteroids, etc). Their observations have shown a tremendous diversity among the things that make up our solar system, and among the solar systems that we know about in our galaxy. There are many differences from object to object, and from system to system, but there are some similarities, too. What are the reasons for these similarities and differences? Why, for example, did the Earth and Venus wind up so similar in some ways (size, mass), but so different in other ways (such as their surface temperatures)? These scientists use all of the information they can, both from Earth-based telescopes, and from spacecraft - to try and puzzle out these histories, and to try and understand the reasons for the diversity they see. In this class, I'll try to give you the opportunity to think like a scientist, and go through some of this reasoning yourself.

Astronomy 4 lecture schedule, Spring 2017 Morning Class

Important: Dates of TESTS are fixed, but the *lecture topics* (shown in italics) are tentative. For example, we may or may not cover Observatories..." on May 5th, depending on how quickly we cover

SATURDAY

Last day to add

28

12

19

26

16

23

30

universe

Newton's Laws:

a change of motion?

Observatories

on Earth and in

What causes

space

The Earth:

geophysics

Comparative

planetology:

and Earth

Tectonics of Venus

"Five Years on Mars"

Ice, geysers, a giant

Last day to drop

with "W" grade

"walnut", and lakes

Meteors and

meteorites

Impact hazards

and planetary

defense

Extrasolar

Planets: What

we know so far

Saturn's Moons:

A quick course

in geology and

27

4

18

25

8

15

22

29

Tycho's data

The Sun:

Structure.

Twin sibling...

or not? Venus

effect

Mars:

for life

and the greenhouse

Evidence for water

Saturn and its rings

Asteroids Ceres

The Dawn

and Vesta

Rosetta:

A Comet

How to find

other stars

planets around

Mission to

mission:

and the search

Fusion. Magnetic field

How

3

10

17

24

7

14

28

and Kepler's laws

telescopes work

22

29

13

20

27

3

10

17

24

31

HOLIDAY

		Each te				for details.	
		MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	
Wk. 1	Apr	10 Class Enrollment	How the class works, Looking at the Sky	1 12 13 Apparent Magnitudes, The Ancient Two-Sphere Univ.			
Wk.	Apr	17 Moon Phases: What we see	18 Moon Phases: What's really			Pre-Copernican	

Galileo: Jupiter's

a gibbous Venus

moons and seeing

Review

Test 1

Origin of the

Mercury: The

Review

Jupiter's Moons: 31

Test 2

Ice, volcanoes,

and the search

Asteroids:

Review

What is a planet?

INAL

7:00 - 9:00 am

EXAM

and the search

for Planet Nine

Test 3

A failed planet

for life

planet

Solar System

(slightly) shrinking

25

2

9

16

23

30

6

13

20

27

going on?

Tides.

"Galileo's Battle

for the Heavens"

How orbits work

"Birth of the Earth"

Its origin, geology,

Early observations

and discoveries

The giant planet

Neptune

Comets

New Horizons:

Pluto revealed

at last

and exploration

Mars:

Jupiter:

Earth's Moon:

24

1

22

29

5

12

19

26

2

Wk.

in the sky

Copernican model

TEST 1

Light and spectra

Earth's Moon:

all those craters?

TEST 2

HOLIDAY

Uranus

TEST 3

Discovery

of Pluto

What formed

Apr

The

May

May

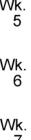
May

May

May/

Jun

Jun


Jun

Jun

Jun

Wk.

Wk.

Wk.

Wk.

10

Wk.

11

Wk.

12

Astronomy 4 reading assignments, Spring 2017 Morning Class

The reading assignments shown below should be done BEFORE each class.

Some assignments apply to both the 8th and 9th editions of "The Solar System" by Seeds and Backman.

Where the pages are different between the two editions, the 8th and 9th edition

		pages are lis	sted separately.				
		MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
Wk.	Apr	Class Enrollment 10	How the class 11 works, Looking at the Sky	Diurnal apparent 12 motions in the sky	Annual apparent 13 motions in the sky	Apparent Magnitudes, The Ancient	15
1			Chap. 1	p. 18-19	Sec. 2-2, 2-3	Section 2-1	15 22 Last day to add
Wk. 2	Apr	Moon Phases: Drawings 2a, 2b ¹⁷ in The Phases of the Moon"	Moon Phases: What's really going on? Section 3-1	Eclipses 19 Sec. 2-2, 2-3	Seasons 20 8th: p. 22, 24-25 9th: p. 22-25	Pre-Copernican 21 models of the 8th p. 55-59 9th: p. 56-61	
Wk. 3	Apr	The 24 Copernican model 8th: p. 60-63 9th: p. 59, 62-64	for the Heavens" 8th: p. 70-73	Galileo: Jupiter's 26 8th: Carefully review Figs. 4-17 and 4-18 9th: Fig. 4-18	Tycho's data 27 and Kepler's laws 8th: p. 64-69 9th: p. 65-70	8th: p. 78-84 28 (up to Sec. 5-2) 9th: p. 80-86 (up to Sec. 5-2)	29
Wk. 4	May	TEST 1	Tides, How orbits work Section 5-2	Review Test 1	How telescopes work Sec. 6-1, 6-2	Observatories on Earth and in space Sec. 6-3 thru 6-5	6
١٨/١.		Light and spectra 8	"Birth of the Earth" 9	Origin of the 10	The Sun: 11	The Earth: 12	13

22

Wk. 3	Apr	The 24 Copernican model 8th: p. 60-63 9th: p. 59, 62-64	for the Heavens" 8th: p. 70-73	Galileo: Jupiter's 26 8th: Carefully review Figs. 4-17 and 4-18 9th: Fig. 4-18	Tycho's data 27 and Kepler's laws 8th: p. 64-69 9th: p. 65-70	8th: p. 78-84 28 (up to Sec. 5-2) 9th: p. 80-86 (up to Sec. 5-2)	29
Wk.	May	1 TEST 1	Tides, 2 How orbits work	3 Review	How telescopes work 4	Observatories on Earth and in	6
4	Iviay	15311	Section 5-2	Test 1	Sec. 6-1, 6-2	Sec. 6-3 thru 6-5	
		Light and spectra 8	"Birth of the Earth" 9		The Sun: 11 Structure,	The Earth: 12 A quick course	13
Wk.	May		046. 000 101 001 000	Solar System	Structure,	A quick course	

Wk.	May	1 TEST 1	Tides, 2 How orbits work	Review 3	telescopes work 4	on Earth and in	6
4	iviay	1231 1	Section 5-2	Test 1	Sec. 6-1, 6-2	Sec. 6-3 thru 6-5	
		Light and spectra 8	"Birth of the Earth" 9	Origin of the Solar System	The Sun: 11 Structure,	The Earth: 12 A quick course	13
Wk. 5	May	Chap. 7	8th: Sec. 19-1, 20-1, 20-2	8th: Sec. 19-2, 19-3	Fusion,	8th: Sec. 20-3, 20-4	
- 0		σπαρ. τ	9th: Sec. 10-2, 11-1, 11-2	9th: Sec. 10-1, 10-3	Ma Chia field	9th: Sec. 11-3, 11-4	
10/16		Earth's Moon: 15 What formed	Earth's Moon: 16 Its origin, geology,	Mercury: The 17 (slightly) shrinking	Twin sibling 18 or not? Venus	Comparative 19	20
Wk. 6	May	8th: p. 450-456	8th::p:/457=461	8th: Sec. 21-2	8th: Sec. 22-1	8th: Sec. 22-1	
٠ ا		9th: n 244-250	9th n 251-255	9th: Sec 12-2	9th: Sec 13-1	9th Sec 13-1	

ννκ. 5	May	Chan /	8th: Sec. 19-1, 20-1, 20-2 9th: Sec. 10-2, 11-1, 11-2	8th: Sec. 19-2, 19-3 9th: Sec. 10-1, 10-3	Fusion, Ma Chi ap. 8	8th: Sec. 20-3, 20-4 9th: Sec. 11-3, 11-4	
Wk. 6	May	Earth's Moon: 15 What formed 8th:: p. 244-250	Its origin geology	Mercury: The (slightly) shrinking 8th Sec. 21-2 9th: Sec. 12-2	Twin sibling 18 or not? Venus 8th!:\Sec.!224\forall 9th:\Sec. 13-1	Comparative planetology: 8th: Sec. 22 ^{u4} 9th: Sec. 13-1	20
Wk. 7	May	722 TEST 2	Mars: 23 Early observations 8th: ps:483-490 9th: p. 278-284	24 Review Test 2	Mars: 25 Evidence for water 8th:hps:490-498	"Five Years on Mars"26	HOLIDAY 27

7	Iviay	1651 2	9th: p. 278-284	Test 2	9th. p. 284-292		HOLIDAI
Wk. 8	May/ Jun	HOLIDAY 29	Jupiter: 30 The giant planet 8th: Sec. 23-1, 23-2 9th: Sec. 14-1, 14-2	for life	Se8th: pt:51945211 and 527-531 9th: p. 312-314 and 319-323	Saturn's Moons: 2 "Titan" through "The Origin of Saturn's Moons"	3
Wk. 9	Jun	Uranus 5 8th: Sec. 24-1	Neptune 6 8th: Sec. 24-2	Asteroids: 7 A failed planet 8th: Sec. 25-2	The Dawn 8 mission: Asteroids Ceres	Meteors and 9 meteorites 8th: Sec. 25-1	10

9 9	Jun	8th: Sec. 24-1 9th: Sec. 15-1	8th: Sec. 24-2 9th: Sec. 15-2	A failed planet 8th: Sec. 25-2 9th: Sec. 16-2	mission: Asteroids Ceres and Vesta	8th: Sec. 25-1 9th: Sec. 16-1	
Wk. 10	Jun	TEST 3	Comets 13 8th: Sec. 25-3 9th: Sec. 16-3	Review Test 3	Rosetta: 15 Mission to A Comet	Impact hazards 16 and planetary 8th Sec. 25-4 9th: Sec. 16-4	17
Wk. 11	Jun	Discovery 19 "The Discovery of Pluto" 8th: p. 553 9th: p. 346-347	New Horizons: 20 Pluto revealed 8th: p. 553-556 9th: p. 347-350	What is a planet? 21 and the search for Planet Nine		Extrasolar 23 Planets: What 8th: p. 426 428 9th: p. 218-220	24
		26	27	FINAL 28	29	30	31

7:00 - 9:00 am

Jun

Astronomy 4

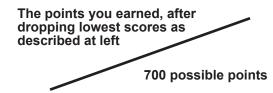
GRADES

step 1:

step 2:

step 3:

You take various tests and the final


I drop the lowest midterm score

I calculate the final grade.

-200pts = 400 points of midterms

Your final percentage =

FINAL EXAM

Test 3

300 points

There's no way I'm gonna drop this one...

I then round your final percentage to the nearest whole percent, and use the following grading scale:

Notes:

1) A %-age like 88.7 rounds to an 89, so it's an A.

89-100 A 79-88 B 68-78 C 57-67 D <57 F

If something causes you to miss a test, that will be the one that you drop. This means that there are NO MAKEUPS.

You have to take all of your midterms and your final exam with YOUR SECTION of the class.

I'm afraid that my schedule won't allow me to give you a final at a different time in order to fit your vacation. You'll need to plan around the final.

Astronomy 4 Rules and Procedures

During the first few weeks of class, I will collect state-mandated attendance data using a sign-in sheet and/or seating chart.

ADDING THE CLASS:

If you add the class, *make sure that your add code has worked, and that you have been properly added to the class*. If not, it is your responsibility to check with the Admissions/Records office to find out how this can be corrected. After the end of Week 2, the College cannot process a late add, and you could find yourself not enrolled and not receiving a grade for the course, if you're not registered!

DROPPING THE CLASS:

I would like to see everyone complete the course, earn a good grade, and become excited about science. However, the realities of life sometimes get in the way. You should asses your situation realistically throughout the quarter. If you decide to drop the class, you must do so by the final date to drop with a "w", or you risk receiving an "F" if you haven't earned enough points to pass the class.

Let me re-emphasize that: If you decide to drop the course, it is *your* responsibility to go to the registrar and drop yourself. The deadline is the end of the eighth week.

VERY IMPORTANT INFORMATION ABOUT DROPPING AND THE END OF THE QUARTER:

For many years, De Anza students have been given the impression that "your instructor can drop you" after the end of the 8th week. THIS IS CHANGING! We are no longer allowed to give a "W" on the final grade form. Additionally, I will NOT be able to drop you using a blue 'Addendum to Class List' form after the end of the 8th week. If you have a personal hardship after the end of the 8th week, you will have to request a "Late Drop" using a white form called "Petition for Exception to Registration Policies", which will be evaluated by the Registrar and/or the Academic Council.

CLASS ENVIRONMENT:

Remember that we have all chosen to be in this class. We should thus have an environment that fits this choice.

Talking to your neighbor(s) while I'm lecturing, reading non-course material in class, doing outside homework, and using wireless devices of any kind are not allowed in class, and may result in dismissal for the remainder of the class period. Such dismissal will count as an absence.

TESTS:

After you start working on a test or quiz, you must hand it in before leaving the room.

If you arrive late for a test or quiz, you won't be given extra time to finish it.

On tests and quizzes, once the first person has turned it in and left the room, no further latecomers will be given tests.

If you find yourself wanting to use a calculator on a test (such as to solve an extra-credit question that involves a numerical calculation), you'll need to use a regular calculator; you can't use a cell-phone calculator.

NOTICE

Cheating on any exam or project is grounds for a failing grade in the class and a permanent note in a student's file. "Cheating" is defined (in this course) to be an effort by a student to obtain a grade by any means other than demonstration of that student's individual achievement in mastering the class material and/or fulfilling terms of a project.

Further grounds for expulsion from the class include any activity which interferes with others' ability to benefit from the class (such as chronic distracting behavior) or which degrades the Planetarium's function or environment.