What Is this “testing” everyone
keeps talking about”

Kevin Metcalf (MetcaltKevin@DeAnza.edu)
Slides and sample code at:
deanza.edu/faculty/metcalfkevin/talks.htmi

http://deanza.edu/faculty/metcalfkevin/talks.html

What Is this “testing” everyone
keeps talking about”

Or: “Oh crap, my talk was accepted; | should probably
actually learn how to test stuff in Perl and maylbe someone
else can learn from my mistakes along the way...”

Perl lesting Ecosystem

* (Google search for “perl testing” generates
13,100,000 results (in .25 seconds)

* ok(1l, '1 1s true');

re. me and testing

e |'ve been coding in Perl for > 20 years.

o Before 3/20/2015 of this year, | had never written a
single test (in any language).

e This talk was accepted on 3/15/2015.

e | will not make any assumptions about your
knowledge of testing - including whether it's useful.

Sample Program

You need to write a program to validate a keycard (or
'fob") has access to a specific door.

Program Features

Program will take two CL args: door num, folbb num.

If not called with exactly two inputs, explain usage.

f called with a valid door/folbb combo, return "Access Allowed".
f called with invalid door/folbb combo, return "Access Denied".

A "door" will include the building (A..Z), a floor (01..99), and a
door number (101..999).

A 'fob" is a 16-digit hex number.

O 00 J & O & W DN B

D N N o N R P PP PP PR
OO & W DN P O VW O0L JO O s WD P, O

#!/usr/bin/perl
use warnings;
use strict;

UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
1f (scalar QARGV != 2) {
my Susage =<<"EOT";
Usage: $0 DOORNUM FOBNUM
DOORNUM 1is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. All01)
FOBNUM 1s 16 hex digits.
EOT
die "\nSusage\n";

}

my $door number = shift;
my $fob number = shift;
print "Validating [$fob number] has access to [$door number]... ";

1f (($Sfob number eq '0123456789ABCDEF') && ($door number eq 'All101'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF') && ($door number eq 'All02'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF') && ($door number eq 'All03'"))
{ print "OK.\n"; }

else { print "ACCESS DENIED.\n"; }

example 001

[kevin@trggit example001]$./fob access.pl example 001

Usage: ./fob access.pl DOORNUM FOBNUM
DOORNUM is a number of format BFFDDD (BUILDING, FLOOR, NUMBER - e.g. A01101)
FOBNUM is 16 hex digits.

[kevin@trggit example001]$./fob access.pl A01101 0123456789ABCDEF
Validating [0123456789ABCDEF] has access to [A01101]... OK.

[kevin@trggit example001]$./fob access.pl Q01101 0123456789ABCDEF
Validating [0123456789ABCDEF] has access to [Q01101]... ACCESS DENIED.

[kevin@trggit example001]$./fob access.pl A01101 0123456789000000
Validating [0123456789000000] has access to [A01101]... ACCESS DENIED.

[kevin@trggit example001]$

A petter approacn to
testing your codge...

It only there was a simple way to test our code!

A pbetter approach would...

Allow us to run all our tests at once.

Be automated as much as possible.

Work even if we refactor our code.

Help ensure new code doesn’t break something that used to work.
Force us to code in smaller, easier to maintain chunks.

Etc

TAP

Test Anything Protocol

Sample TAP output...

Il o8
ok 1 - The variable Sa contains the value "4"
ok 2 - Sa plus $b = 9

Sample Perl test program

example 005

O OO0 ~J & O & W D K-

=
= O

#!/usr/bin/perl
use warnings;
use strict;

use Test::More tests => 2;

4;
5;

3 3
K
w0 n
o o
i

is($a, '4’', 'The variable $a contains the value "4"");
is(Sa+Sb, 9, 'Sa plus Sb = 9');

S perl test example.t

1,..2

ok 1 - The variable S$Sa contains the value "4"
ok 2 - Sa plus $b = 9

What happens when a test tails?

example 006

O 00 ~J & O & W D K-

=
o

#!/usr/bin/perl
use warnings;
use strict;

use Test::More tests => 1;

4;
99:

my Sa
my S$b

is(Sa+$b, 9, 'Sa plus Sb = 9');

S perl example006/test example.t
l..1

not ok 1 - Sa plus $b = 9

Failed test 'Sa plus $b = 9

got: '103"
expected: '9’
Looks like you failed 1 test of 1.

at example006/test example.t line 10.

4;
5;

my Sa
my S$Sb

is(Sa+$b, 9, 'Sa plus Sb = 9');

In module:

sub add two {
my $a = shift;
my $b = shift;
return S$a+S$b;

In Test Code:
is(add two(4,5), 9,

‘add two(4, 5) returned 9');

Some Test:More functions:

* 1s()
is($a+$Sb, 9, 'Sa+$b is 9.');

* ok ()
ok(Sa, 'Sa 1s true.');

e 1like()
like(mysub($Sa), gr/right/, 'Got
expected output from mysub(S$a)');

O 00 J & O & W DN B

D N N o N R P PP PP PR
OO & W DN P O VW O0L JO O s WD P, O

#!/usr/bin/perl
use warnings;
use strict;

UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
1f (scalar QARGV != 2) {
my Susage =<<"EOT";
Usage: $0 DOORNUM FOBNUM
DOORNUM 1is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. All01)
FOBNUM 1s 16 hex digits.
EOT
die "\nSusage\n";

}

my $door number = shift;
my $fob number = shift;
print "Validating [$fob number] has access to [$door number]... ";

1f (($Sfob number eq '0123456789ABCDEF') && ($door number eq 'All101'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF') && ($door number eq 'All02'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF') && ($door number eq 'All03'"))
{ print "OK.\n"; }

else { print "ACCESS DENIED.\n"; }

example 001

lTest Driven Development
(way oversimplitied)

1. Define a feature you want to implement.
2. Define the test cases for the feature.
3. Write just enough code to implement the feature.

4. Re-factor your code if needed.

Program Features

- Program will take two CL args: door num, fob num.
- If not called with exactly two inputs, explain usage.
f called with a valid door/folbb combo, return "Access Allowed".
f called with invalid door/folbb combo, return "Access Denied".

A "door" will include the building (A..Z), a floor (01..99), and a
door number (101..999).

A 'fob" is a 16-digit hex number.

Where do we start?

1. Create a .pm file to hold your package code:
€e.g., Fobaccess.pm

2. Create a subroutine for each code section:
e.J., sub validate data()

3. Create a .t file to hold your test code:
e.g., Fobaccess.t

4. "Use" your .pm file in your .t file and add your test
Cases:
€.J., use Fobaccess;

O© 00 N O U1 & W N -

(DO VO B \O B A BN \O T O 0 i o o o R R O
O & W NEFEPF O WO IO U & WN = O

#!/usr/bin/perl
use warnings;
use strict;

UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
if (scalar @ARGV != 2) {
my Susage =<<"EOT";
Usage: $0 DOORNUM FOBNUM
DOORNUM is a number of format BF#i## (BUILDING, FLOOR, NUMBER - e.g. All01l)
FOBNUM is 16 hex digits.
EOT
die "\nSusage\n";

}

my $door number = shift;
my $fob number = shift;
print "Validating [$fob number] has access to [$door number]... ";

1f (($Sfob number eq '0123456789ABCDEF') && ($door number eq 'All101'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF') && ($door number eq 'All02'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF') && ($door number eq 'All03'"))
{ print "OK.\n"; }

else { print "ACCESS DENIED.\n"; }

example 001

tests for usage sub
sub validate input()

requires: exactly two inputs

e exactly two Iinputs
* |ess than two Inputs

* more than two Inputs

example 008

#!/usr/bin/perl

use warnings;

use strict;

use Test::More tests => 1;
use Fobaccess:

my @good array = ('A01101', '0123456789ABCDEF');
like (Fobaccess: :validate input(@good array), gr/Correct/,
'Exactly two inputs for validate input() as expected.');

package Fobaccess; example 008

use warnings;
use strict;

sub validate input {
1f (scalar @ != 2) {

my Susage =<<"EOQOT";
Usage: $0 DOORNUM FOBNUM

DOORNUM 1s a number of format BFFDDD (BUILDING, FLOOR, NUMBER - e.g. A01101)
FOBNUM 1s 16 hex digits.

EOT

return Susage;

}
return 'Correct number of inputs'’;
}

example 008

#!/usr/bin/perl

use warnings;

use strict;

use Test::More tests => 1;
use Fobaccess;

my @good array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate input(@good array), gr/Correct/,
'Exactly two inputs for validate input() as expected.');

S perl Fobaccess.t
1..1

ok 1 - Exactly two inputs for validate input() as expected.

#!/usr/bin/perl

use warnings;

use strict;

use Test::More tests => 3;
use Fobaccess;

my @good array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate input(@good array),
gr/Correct/, 'Exactly two inputs for validate input() as expected');

like(Fobaccess::validate input('onlylval'),
qr/Usage/, 'Less than two inputs fails as expected for validate input()');

like(Fobaccess::validate input('3vals’', '3vals’', '3vals’),
qr/Usage/, 'More than two inputs fails as expected for validate input()');

example 009

S perl Fobaccess.t

1..8

ok 1 - Exactly two inputs for validate input() as expected

ok 2 - Less than two inputs fails as expected for validate input()
ok 3 - More than two inputs fails as expected for validate input()

A successtul test...

e ... SuUcceeds as expected

... lalls as expected!

Program Features

Program will take two CL args: door num, fob num.

If not called with exactly two inputs, explain usage.

- If called with a valid door/fob combo, return "Access Allowed".

- If called with invalid door/fob combo, return "Access Denied".

A "door" will include the building (A..Z), a floor (01..99), and a door
number (101..999).

A 'fob" is a 16-digit hex number.

O 00 J O U1 & W DN K-

NN NDNNNRRRRR @B B2 B |3 (2
U WINEFHOWOOSNO U S WN K+~ O

#!/usr/bin/perl
use warnings;
use strict;

UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
1f (scalar @ARGV != 2) {
my Susage =<<"EOT";
Usage: $0 DOORNUM FOBNUM
DOORNUM is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. Al101)
FOBNUM 1s 16 hex digits.
EOT
die "\nSusage\n";

}

my $door number = shift;
my $fob number = shift;
print "Validating [$fob number] has access to [$door number]... ";

if ((Sfob number eq '0123456789ABCDEF') && (Sdoor number eq 'Al1101'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF ') && (Sdoor number eq 'Al1102'))
{ print "OK.\n"; }

elsif (($fob number eq '0123456789ABCDEF ') && ($door number eq 'Al1103'))
{ print "OK.\n"; }

else { print "ACCESS DENIED.\n"; }

example 001

tests for access
sub test access/()

requires: exactly two inputs, a door and a fob

* has less than two Inputs
* has more than two Inputs
* has two valid inputs - door and fob data

* has two invalid inputs - door and fob data

#1/usr/bin/perl example 010

use warnings;

use strict;

use Test::More tests => 7;
use Fobaccess;

my @good array = ('A01101"', '0123456789ABCDEF');
ok (Fobaccess::validate input(@good array),
'Two 1inputs expected for validate input() ');

like(Fobaccess::validate input('onlylval'),
gr/Usage/, 'One input fails as expected for validate input()');

like(Fobaccess::validate input('3vals’', '3vals', '3vals’),
qr/Usage/, 'Three inputs fail as expected for validate input()');

like (Fobaccess: :test_access('onlylval'),
gr/Invalid number/, 'One input fails as expected for test access()');

like (Fobaccess: :test access('3vals’', '3vals’', '3vals’),
gr/Invalid number/, 'Three inputs fails as expected for test access()');

like (Fobaccess: :test access (@good array),
gr/Yes/, 'Two valid inputs OK for test_access()');

like (Fobaccess::test access(not a fob', 'not a door'),
qr/No/, 'Two invalid inputs for test access() fail as expected');

sub test access { example 010

if (scalar @ != 2)
{ return "Invalid number of inputs"; }

my $door number = shift;
my $fob number = shift;

1f ((S$Sfob number eq '0123456789ABCDEF') && ($door number eq 'A01101"))
{ return 'Yes'; }

elsif (($fob number eq '0123456789ABCDEF') && ($door number eq 'A01102"))
{ return 'Yes'; }

else { return 'No'; }

}

S perl Fobaccess.t

1 - Two inputs expected for validate input()
2 - Less than two 1nputs fails as expected for validate input()
3 - More than two inputs fails as expected for validate input()
ok 4 - Less than two inputs fails as expected for test access()
5 - More than two 1nputs fails as expected for test access()
6 - Two valid inputs OK for test access()

7 - Two 1nvalid inputs for test access() fail as expected

#1/usr/bin/perl example 010
use warnings;

use strict;
use Test::More tests => 7;
use Fobaccess;

my @good array = (' A01101', '0123456789ABCDEF');
ok (Fobaccess::validate input(@good array),
'Two 1nputs expected for validate input()');

like(Fobaccess::validate input('onlylval'),
gr/Usage/, 'One input fails as expected for validate input()');

like (Fobaccess::validate input('3vals’', '3vals', '3vals’),
gr/Usage/, 'Three inputs fail as expected for validate input()');

like(Fobaccess::test access('onlylval'),
gr/Invalid number/, 'One input fails as expected for test access()');

like(Fobaccess::test access('3vals', '3vals’', '3vals'),
gr/Invalid number/, 'One input fails as expected for test access()');

like(Fobaccess::test access(@good array),
gr/Yes/, 'Two valid inputs OK for test access()');

like(Fobaccess::test access('not a fob', 'not a door'),
gr/No/, 'Two invalid inputs for test access() fail as expected');

#!/usr/bin/perl
use warnings;
use strict;

use Test::More tests=>3;

use Fobaccess;

my @good array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate input(@good array),

gqr/Correct/, 'Exactly two inputs for validate input() as expected.')

SEVERAL MORE TEST CASES HERE! ...

like(Fobaccess::test access(not a fob', 'not a door'),
gr/No/, 'Two invalid inputs for test access() fail as expected');

4

bad example 011

ok

Fobaccess.t

Two inputs expected for validate input()

Less than two inputs fails as expected for validate input()
More than two inputs fails as expected for validate input()
Less than two inputs fails as expected for test access()
More than two inputs fails as expected for test access|()
Two valid inputs OK for test access()

Two invalid inputs for test access() fail as expected

Looks like you planned 3 tests but ran 7.

#!/usr/bin/perl
use warnings;
use strict;

use Test: :More;
use Fobaccess;

my @good array = ('A01101', '0123456789ABCDEF');
like(Fobaccess::validate input(@good array),
'Exactly two inputs for validate input() as expected.');

qgr/Correct/,

like(Fobaccess::test access('not a fob', 'not a door'),
qr/No/, 'Two invalid inputs for test access() fail as expected');

done testing;

example 011

S perl

ok
ok
ok
ok
ok
ok
ok

N OO WD

Fobaccess.t

Two 1nputs expected for validate input()

Less than two inputs fails as expected for validate input()
More than two i1nputs fails as expected for validate input()
Less than two inputs fails as expected for test access()
More than two inputs fails as expected for test access()
Two valid inputs OK for test access()

Two invalid inputs for test access() fail as expected

Program Features

Program will take two CL args: door num, folbb num.

If not called with exactly two inputs, explain usage.

f called with a valid door/folbb combo, return "Access Allowed".
f called with invalid door/folbb combo, return "Access Denied".

- A "door" will include the building (A..Z), a floor (01..99), and
a door number (101..999).

- A "fob" is a 16-digit hex number.

tests for door validation (format: BFFDDD)
sub validate door format/()

requires: exactly one input, the door to check

e | ess than one input

* More than one input

e One input with more than 6 chars

* One input with less than 6 chars

* One input with bad (non-numeric) floor data
* One input with bad (non-numeric) door data

* At least one test of: One input with valid data

tests for door validation (format: 16 hex chars)
sub validate fob format()
requires: exactly one input, the fob to check

e | ess than one input

* More than one input

e One input with more than 16 chars
* One input with less than 16 chars
* One input with bad (non-hex) data

» At least one test of: One input with valid data

like (Fobaccess::validate door format(), gr/Not enough inputs/, example 012

'Less than one input fails for validate door format() as expected');

like(Fobaccess::validate door format('two inputs', 'two inputs'), gr/Extra inputs/,
'More than one input fails for validate door format() as expected');

like(Fobaccess::validate door format('Al23'), gr/too few/,
'Too few chars on input fails for validate door format() as expected');

like(Fobaccess::validate door format('0123456789ABCDEF'), gr/too many/,
'Too many chars on input fails for validate door format() as expected'’);

like(Fobaccess::validate door format('Al1234A'), gr/Not a door/,
'Bad door chars on input fails for validate door format() as expected'’);

like(Fobaccess::validate door format('Abl234'), gr/Not a door/,
'Bad floor chars on input fails for validate door format() as expected'’);

like(Fobaccess::validate door format('Al12345'), gr/Valid door/,
'Good data works for validate door format() as expected');

like(Fobaccess::validate door format('zZ98765'), gr/Valid door/,
'Good data works for validate door format() as expected');

like(Fobaccess::validate fob format(), gr/Not enough inputs/, example 012

'Less than one input fails for validate fob format() as expected');

like(Fobaccess::validate fob format('two inputs', 'two inputs'), gr/Extra inputs/,
'More than one input fails for validate fob format() as expected’);

like(Fobaccess::validate fob format('0123456789ABCDEF0'), gr/Not a valid fob/,
'Too many chars on input fails for validate fob format() as expected');

like(Fobaccess::validate fob format('0123456789ABCDE'), gr/Not a valid fob/,
'Too few chars on input fails for validate fob format() as expected');

like(Fobaccess::validate fob format('Z123456789ABCDEF'), qr/non-hex/,
'Bad (non-hex) data on input fails for validate fob format() as expected');

like(Fobaccess::validate fob format('0123456789ABCDEF'), qgqr/Valid fob/,
'Good data works for validate fob format() as expected');

like(Fobaccess::validate fob format('ABCDEF0123456789'), gr/Valid fob/,
'Good data works for validate door format() as expected');

sub validate door format ({ example 012

1f (scalar @ > 1) { return "Extra inputs to validate door format"; }
elsif (scalar @ < 1) { return "Not enough inputs to validate door format"; }
my S$input door shift;
1f (length $input door > 6) { return "Not a valid door; too many chars"; }
elsif (length $input door < 6) { return "Not a valid door; too few chars"; }
unless ($input door =~ /"[a-z]\d{5}$/1i)

{ return "Not a door; does not match BFFDDD"; }
return "Valid door";

}

sub validate fob format {
1f (scalar @ > 1) { return "Extra inputs to validate fob format"; }
elsif (scalar @ < 1) { return "Not enough inputs to validate fob format"; }
my S$Sinput fob = shift;
1f (length $input fob > 16) { return "Not a valid fob; too many chars"; }
elsif (length $input fob < 16) { return "Not a valid fob; too few chars"; }
unless (Sinput fob =~ /"[\da-f]1{16}$/1)

{ return "Not a fob; at least one non-hex char"; }
return "Valid fob";

}

S perl
ok 1
ok 2
ok 3
ok 4
ok 5
ok 6
ok 7
ok 8
ok 9
ok 10
ok 11
ok 12
ok 13
ok 14
ok 15
ok 16
ok 17
ok 18
ok 19
ok 20
ok 21
ok 22

N
N

Fobaccess.t

Two inputs expected for validate input()

One input fails as expected for validate input()

Three inputs fail as expected for validate input()

One input fails as expected for test access()

One input fails as expected for test access()

Two valid inputs OK for test access()

Two invalid inputs for test access() fail as expected

Less than one input fails for validate door format() as expected

More than one input fails for validate door format() as expected
Too few chars on input fails for validate door format() as expected

Too many chars on input fails for validate door format() as expected
Bad door chars on input fails for validate door format() as expected
Bad floor chars on input fails for validate door format() as expected
Good data works for validate door format() as expected

Good data works for validate door format() as expected

Less than one input fails for validate fob format() as expected

More than one input fails for validate fob format() as expected

Too few chars on input fails for validate fob format() as expected

Too many chars on input fails for validate fob format() as expected

Bad (non-hex) data on input fails for validate fob format() as expected
Good data works for validate fob format() as expected

Good data works for validate door format() as expected

example 012

Program Features

Program will take two CL args: door num, folbb num.

If not called with exactly two inputs, explain usage.

f called with a valid door/folbb combo, return "Access Allowed".
f called with invalid door/folbb combo, return "Access Denied".

A "door" will include the building (A..Z), a floor (01..99), and a
door number (101..999).

A 'fob" is a 16-digit hex number.

O 00 J & O & W DN B

D N N o N R P PP PP PR
OO & W DN P O VW O0L JO O s WD P, O

#!/usr/bin/perl
use warnings;
use strict;

UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
1f (scalar QARGV != 2) {
my Susage =<<"EOT";
Usage: $0 DOORNUM FOBNUM
DOORNUM 1is a number of format BF### (BUILDING, FLOOR, NUMBER - e.g. All01)
FOBNUM 1s 16 hex digits.
EOT
die "\nSusage\n";

}

my $door number = shift;
my $fob number = shift;
print "Validating [$fob number] has access to [$door number]... ";

1f (($Sfob number eq '0123456789ABCDEF') && ($door number eq 'All101'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF') && ($door number eq 'All02'))
{ print "OK.\n"; }

elsif ((S$fob number eq '0123456789ABCDEF') && ($door number eq 'All03'"))
{ print "OK.\n"; }

else { print "ACCESS DENIED.\n"; }

example 001

#!/usr/bin/perl example 012
use warnings;

use strict;

use Fobaccess;

my Sreturn value = Fobaccess::validate input(@ARGV);
1f (Sreturn value ne 'OK')
{ die S$return value; }

1f (Fobaccess::test access(@ARGV) eq 'Yes') {
print "Access Allowed\n";

}

else {
die "Access Denied\n":

}

S ./fob access.pl A01101 0123456789ABCD:
Access Allowed

$./fob access.pl Al 0123456789ABCDEF
Access Denied

1]
I

example 013

sub validate input ({
UNLESS WE HAVE TWO INPUTS, SHOW DIE WITH USAGE.
1f (scalar @ != 2) {
my Susage =<<"EOQOT";
Usage: $0 DOORNUM FOBNUM
DOORNUM 1s a number of format BFFDDD (BUILDING, FLOOR, NUMBER - e.g. A01101)
FOBNUM 1s 16 hex digits.
EOT
return Susage;

}

my S$door validation_result = validate_door format($_[0]);
if (Sdoor validation result ne 'Valid door')
{ return $door validation result; }
my Sfob validation_result = validate fob format($_[1]);
if ($fob validation result ne 'Valid fob')
{ return $fob validation result; }
return 'OK';

}

23
£

S ./fob access.pl A01101 0123456789ABCD:

Access Allowed
$./fob access.pl Al 0123456789ABCDEF
Not a valid door; too few chars at ./fob access.pl line 8.

S perl
ok 1
ok 2
ok 3
ok 4
ok 5
ok 6
ok 7
ok 8
ok 9
ok 10
ok 11
ok 12
ok 13
ok 14
ok 15
ok 16
ok 17
ok 18
ok 19
ok 20
ok 21
ok 22

N
N

Fobaccess.t

Two inputs expected for validate input()

One input fails as expected for validate input()

Three inputs fail as expected for validate input()

One input fails as expected for test access()

One input fails as expected for test access()

Two valid inputs OK for test access()

Two invalid inputs for test access() fail as expected

Less than one input fails for validate door format() as expected

More than one input fails for validate door format() as expected
Too few chars on input fails for validate door format() as expected

Too many chars on input fails for validate door format() as expected
Bad door chars on input fails for validate door format() as expected
Bad floor chars on input fails for validate door format() as expected
Good data works for validate door format() as expected

Good data works for validate door format() as expected

Less than one input fails for validate fob format() as expected

More than one input fails for validate fob format() as expected

Too few chars on input fails for validate fob format() as expected

Too many chars on input fails for validate fob format() as expected

Bad (non-hex) data on input fails for validate fob format() as expected
Good data works for validate fob format() as expected

Good data works for validate door format() as expected

example 013

Program Features

Program will take two CL args: door num, folbb num.

If not called with exactly two inputs, explain usage.

f called with a valid door/folbb combo, return "Access Allowed".
f called with invalid door/folbb combo, return "Access Denied".

A "door" will include the building (A..Z), a floor (01..99), and a
door number (101..999).

A 'fob" is a 16-digit hex number.

What do | do next?

Try to modity the code presented today; add tests and write the
code for a DB interface instead of if/else/elsif.

Test::Tutorial - Lots of good documentation in there!

Read up on using the prove command (and t/ directories).

Search YouTube for other YAPC talks on testing.

