Instructor:	Hassan, Bourgoub
Course Name:	Single Variable Calculus I
CRN/Section	$1478 / 07$
Classroom:	S45
Time:	MTWTH 10:30AM 11:20AM
Office Hours	$12: 30-1: 20$
Office/Phone:	S47A/ (408) 864 8806
Email: Text Book	$\underline{\text { Bourgoubhassan@fhda.edu }}$
PREREQUISITES	
Calculus, Webassign edition 8e, by Stewart.	

Minimum Requirements

Attendance
Perfect attendance is required of every student. You are expected to be in class daily on time and remain through the duration of class. Call every time you miss class. Two consecutive absences may constitute dismissal from class. In the event you decide to withdraw from the course, it is your sole responsibility to fill out a drop sheet and submit it to the records office.

Test performance

Satisfactory performance on tests and the final exam are necessary for passing the course.

Homework:

Homework is an integral part of the course. It is very unlikely for most students to succeed in this class without completing all homework assignments on time. We will use Web-Assign website for course homework and access to the textbook. You are to purchase an access code separately or bundled with a new textbook. The due date for each assignment are available on the site. All due dates are set approximately four days after the relevant material is discussed in class. Each assignment comprises a number of homework credits equal the number of problems in the assignment. Homework credits convert at the end of the quarter to a maximum of 120 course points.

Written Assignments:

These assignments correspond to the sections covered in the textbook, and they are available in PDF format on my web page, under the Assignment Link next to the course schedule. Print each assignment back to back and bring with you to the classroom based on the daily schedule for the course. These assignments are not collected, but they are used to create the three written exams during the quarter.

Testing

We are going to have Three Written tests, three multiple-choice tests, and a final exam. The MC tests are worth 40 points each, 20 points each for the written tests, and the final exam counts for 100 points. There will be no makeup exams. The final exam will be comprehensive and mandatory. Dates for all tests and tests are available on the course schedule on the class's webpage.

Distribution of Course Grade

Tests
180 pts
WA Homework 120 Pts
Final Exam 100 Pts
Total

$$
400 \mathrm{pts}
$$

Materials

The required text mentioned above, a TI84 calculator or the equivalent, lose paper, pencils and a ruler are required course materials.

Academic Integrity

Refer to Schedule of Classes on college policy under subtitle Academic Integrity; in addition, cheating and plagiarism is not tolerated and will be decisively met with grade F for test/ assignment, and, or dismissal from class depending on the circumstances.

Grading:

The course grade is based on the fixed scale below. Grades are not given to you; they are earned by your desire and willingness to be consistent, persistent and hardworking. There are three components to the total grade in this course, in-class tests, quizzes, Homework, and a final exam. The Final letter grade is based on the scale below.

Grade Scale

Letter Garde	Range
$\mathrm{A}+$	97% and above
A	$94 \%-96 \%$
$\mathrm{~A}-$	$90 \%-93 \%$
$\mathrm{~B}+$	$87 \%--89 \%$
B	$84 \%--86 \%$
B-	$80 \%--83 \%$
C+	$72 \%--79 \%$
C	$65 \%--71 \%$
D	$50 \%--64 \%$
F	below 50%

	WT's	MCT's	HW	WA	Final
\#1					
$\# 2$					
\#3					
Total					

Good Luck

Student Learning Outcome(s):

*Analyze and synthesize the concepts of limits, continuity, and differentiation from a graphical, numerical, analytical and verbal approach, using correct notation and mathematical precision.
*Evaluate the behavior of graphs in the context of limits, continuity and differentiability.
*Recognize, diagnose, and decide on the appropriate method for solving applied real world problems in optimization, related rates and numerical approximation.

